2 research outputs found

    Construcción QSAR de redes complejas de compuestos de interés en Química Farmacéutica, Microbiología y Parasitología

    Get PDF
    El diseño para la búsqueda y desarrollo de fármacos eficaces para el tratamiento de estas enfermedades, que supriman la eliminación o la degeneración celular respectivamente, es una de las líneas de investigación más importantes dentro de la química farmacéutica. En esto entra el diseño de fármacos; el diseño de fármacos está dedicado al desarrollo de modelos matemáticos para predecir propiedades de interés para una gran variedad de sistemas químicos incluyendo moléculas de bajo peso molecular, polímeros, biopolímeros, sistemas heterogéneos, formulaciones farmacéuticas, conglomerados de moléculas e iones, materiales, nano-estructuras y otros. Este tipo de predicciones no pretenden sustituir las técnicas experimentales sino complementar las mismas ayudando a obtener nuevas moléculas activas con mayor probabilidad de éxito, con la ventaja que ello supone en términos de ahorro de tiempo, recursos materiales, y muy importante: el refinamiento y reducción en el uso de animales de laboratorio. Esta metodología se basa en el uso de cálculos por ordenador y en las nuevas tecnologías de la informática. Las cuales pueden ser usadas: Para moléculas pequeñas: a) Estudios de relación cuantitativa estructura molecular-actividad farmacológica (QSAR) y de estructura molecular propiedades toxicológicas y eco-toxicológicas incluyendo mutagenicidad e carcinogénesis (QSTR). b) Predicción de propiedades químicas y fisicoquímicas de moléculas. Estudios de relación estructura molecular y propiedades de absorción, distribución, metabolismo y eliminación (ADME). c) Predicción de mecanismos de acción biológica de moléculas y evaluación in sílico de alta eficacia para grandes bases de datos (virtual HTS). Para macromoléculas: a) Estudios de interacción fármaco-receptor (neuronas). b) Bioinformática aplicada a estudios de relación secuencia-función y propiedades estructurales de ácidos nucleicos y proteínas. c) Búsqueda de nuevas dianas terapéuticas y “sitio activo” a partir de datos de Genómica, Proteómica. d) Búsqueda de biomarcadores para diagnóstico de enfermedades o como indicadores de contaminaciones. e) Predicción de propiedades fisicoquímicas de polímeros sintéticos, biopolímeros, materiales y nano-estructuras. f) Predicción, diseño, y optimización de enzimas mutadas para procesos biotecnológicos

    Prediction of Neurological Enzyme Targets for Known and New Compounds with a Model using Galvez's Topological Indices

    Get PDF
    The 18th International Electronic Conference on Synthetic Organic Chemistry session Computational ChemistryAlzheimer's Disease (AD), Parkinson, and other neurodegenerative diseases are a major health problem nowadays. In this sense, the discovery of new drugs for neurodiseases treatment is a goal of the major importance. Public databases, like ChEMBL, contain a large amount of data about multiplexing assays of inhibitors of a group of enzymes with special relevance in central nervous system. Mono Amino Oxidases (MAOs), Acetyl Cholinesterase (AChE), Glycogen Synthase Kinase-3 (GSK-3), AChE (AChE), and 5α-reductases (5αRs). This data conform an important information source for the application of multi-target computational models. However, almost all the computational models known focus in only one target. In this work, we developed mt-QSAR for inhibitors of 8 different enzymes promising in the treatment of different neurodiseases. In so doing, we combined by the first time the software DRAGON with Moving Average parameters with this objective. The best DRAGON model found predict with very high accuracy, specificity, and sensitivity >90% a very large data set >10000 cases in training and validation series. We also report experimental results about the assay of several 7
    corecore